飾山囃子の山車のぶっつけにおいて強いとされる横町の山車を一例として,その構造の代表的な,特に山車の運航において必要となる特性に直接的な影響を与える寸法を中心に紹介する。
The Yokomachi yama, which has been considered to be strong in the clashing event, is taken as an example, focusing on the dimensions that are representative of its structure, especially those that directly affect the characteristics required in the operation of the yama.
下図の名称を参照して,主構造は車のシャーシに相当するタテドダイとそれを左右につなぐヨコドダイである。この下部構造からツカ(縦材)とスジカイ(斜め材),下部構造と上部構造をつなぐハシラを介して,山車の中央部を水平に構成するマエダケ,左右のヨコダケ,ウシロダケで構成される四角形のフレーム構造が構成される。この山車の中央に位置するフレーム構造をステージとして飾山(ヤマ),その前部の水屋(囃子方が搭乗する),踊り方の舞台が配置される。角館の飾山囃子の山車の構造において特徴的なのは,この祭礼のクライマックスといえる“ぶっつけ”における衝撃力に耐え,囃子方,踊り子,そして山車自身を守るための工夫を積み重ねてきていると理解できるところにある。
Referring to the names in the diagram below, the main structure consists of the tate-dodai, (longitudinal base frame) which corresponds to the chassis of a car, and the yoko-dodai, (transverse base frame) which connects it to the left and right. This lower-level structure, through the tsuka (vertical timbers), sujikai (braces) and hashira (posts), is connected to the middle level structure that is a rectangular frame structure consisting of the mae-tage (front frame), the yoko-tage (side frame) and ushiro-tage (rear frame) on the left and right, which form the horizontal centre of the float. The frame structure in the middle-level of the float is used as the stage on which the decorative mountain (yama), small room in front of the decorated 'mountain' (mizuya ) in which the musicians play musical accompaniments and the stage for the dancers are placed. What is characteristic of the structure of Kakunodate's Oyamabayashi floats is that they seem to have been designed to withstand the force of impact during the climax of the festival (buttuke) and to protect the musicians, dancers, and the float themselves.
丁内を移動する際に鉢合わせとなった山車は,通行権をめぐる“交渉”の後に交渉決裂となるとこの“ぶっつけ”を行いマエダケ同志を激しくぶつけ合い,押し込み合うことを行う。記録によると,一台の山車が前後から二台の山車による“ぶっつけ”の場合もある。この“ぶっつけ”の際にマエダケやウシロダケに掛けられる衝撃力は,このフレーム構造全体とともにスジカイ,ツカを介してタテドダイに伝えられ,前後輪の車軸(シンボウ)に大きな力を掛けることになる。この衝撃力の伝達のさせ方ではシンボウを破損することになり,山車の運航は不可能となり,この祭りのルールでは負けとなり,それぞれの山車を保有する丁内(町をさらに区分したもの)や「若者」(若衆による組織)にとっては屈辱的なこととなる。
The floats meet each other as they move through the streets of local neighbourhoods (cho-nai ). When this happens, if "negotiations" over the right of way break down, the floats that meet each other as they move through the town perform this clash of the floats (butsuke ), in which the front frames (mae-tage ) violently collide with each other and push into each other.
According to records, there were cases where a single float was attacked by two floats, one from the front and one from the rear. The impact force applied to the front frame (mae-tage) and rear frame (ushiro-tage ) during this clash is transmitted to the base frame (tate-dodai) via the braces (sujikai) and, along with the entire frame structure, applies a large force to the front and rear axles (shinbou).
This way of transmitting the impact force damages the axles, making it impossible to operate the floats, and according to the rules of the festival, the floats lose out, which was humiliating for the neighbourhood and the 'young people' (an organization of young people) who owned the floats.
また,飾山囃子の祭礼のエリアにある2つの社寺と歴史的な拝礼および旧藩主分家の佐竹家への挨拶のチェックポイントには全ての山車は出向き一連の儀礼を執り行うことが必須とされているが,山車それぞれが所属する丁内以外を通行する際は必ずそれぞれの丁内のとりまとめ役(張番)に許可を得る必要がある。
さらには,一度通行した丁内を再度通行することはできないために,他の山車の動きを読みながら定められたチェックポイントをクリアするためには,“ぶっつけ”を避ける機動性も求められる。この機動性,操作性は前輪と後輪のシンボウ間の距離が影響を与えることは容易に予想できる。このシンボウ間距離が短ければ直進性を犠牲にしつつも旋回性は向上し,“土壇場”での臨機応変な動きも可能となるように思われる。
In addition, all floats are required to go to a temple called Yakushi-do, a shrine called Shinmei-sha and the Satake family seat (home of a former clan branch) as the greeting checkpoints to perform a series of rituals. As they pass through areas other than the local neighbourhood (cho-nai ) to which each float belongs, the floats should obtain permission from the coordinator (hariban) of the respective cho-nai, in the Oyamabayashi festival area (Fig.1,2).
Furthermore, as each float is only allowed to pass through the same cho-nai once, mobility is required to avoid clashes (butsuke) with other floats in order to clear the checkpoints while reading the movements of the other floats. It is easy to predict that this mobility and maneuverability could be influenced by the distance between the front and rear wheel axles (shinbou). If the distance between the axles is short, the turning capability may be improved at the expense of straightness, and it seems possible to move flexibly at the 'last minute' in the festival.
その一方で,この距離を縮めることはマエダケに上下方向の力が掛かると比較的容易に山車がピッチング方向に傾くことになり後輪のみに力が掛かるような不安的な状況も想定される。この不安定性はマエダケと前輪のシンボウとの水平距離にも大きく支配されることは理解できる。言うまでもないが,この距離が長い場合は安定し,車輪が浮くことは少なくなるように思われるが旋回性は落ち,機動性に問題が出てくるような状況も想定される。
On the other hand, reducing the distance between the axles (shinbou) can also lead to an unstable situation, where the festival wagon can relatively easily tilt in the pitching direction when forces are applied to the front frame (mae-tage), so that forces are transmitted intensively to the rear wheels. It is easily understood that further instability also tends to be induced by the horizontal distance between the front frame and the front wheel axle. If the distance is long, the vehicle may be more stable and the wheels will be less likely to lift off the ground, but turnability will be reduced and maneuverability may become a problem.
また,“ぶっつけ”中も演奏を続ける囃子方への衝撃低減も重要な事項であると思われる。お囃子の演奏ができなくなった山車も負けとなると聞く。囃子方はヤマが設置される区画の前部の水屋内で演奏を行うことになるので,“ぶっつけ”により衝撃力が水屋にできるだけ伝わらないように配慮する必要がある。
It is also important to reduce the impact on the musicians (ohayashi ), who continue to perform during the clashes (butsuke). According to one of the rules of the festival, if the float can no longer facilitate the playing of the musical accompaniment, it is deemed to have lost the battle. Since the musicians perform in the mizuya in front of the area where the yama is located on the wagon, it is necessary to ensure that the impact force is transmitted to the mizuya as little as possible during clashes.
この衝撃力の伝達緩和にはいくつかの構造戦略が考えられるが,一つはマエタゲから前輪シンボウ付近までの前部構造での局所的な衝撃力吸収かマエタゲーヨコタゲーウシロタゲによって構成されるフレームと車軸が取り付けられる左右のタテドダイ,そのタテドダイをつなぐヨコドダイで構成されるシャーシの全体で衝撃力を分散する方法などが,構造力学および振動工学的の観点から考えることができる。
Several structural strategies can be considered for mitigating the transmission of these impact forces. One of these is local impact force absorption in the front structure from the front frame (mae-tage) to the front wheel axle (shinbou) area. Another is a method of dispersing the impact forces throughout the entire chassis, consisting of the front frame, both side frames (yoko-tage ), the rear frame (ushiro-tage), the left and right longitudinal base frames (tate-dodai ) to which the axle is attached and the front and rear transverse base frames (yoko-dodai ) connecting the longitudinal base frames. The entire chasis may be designed from the perspective of structural dynamics and vibration engineering.
横町ヤマ(昭和37年建造)側面図
横町ヤマ(昭和37年建造)断面図
祭りのクライマックスである「ヤマぶつけ」を中心に考えると,対抗するヤマ同志が力を掛け合うポイントは,上図側面図のマエタゲ(前担木)である。そのため,「ぶつけ」における強さの要素として,マエタゲと車軸との距離は重要であることは容易に理解できる。
When considering the climax of the festival (the Yama-butsuke), one of the important structural elements which strongly affects the outcome when the opposing yama compete with each other is at the front frame (mae-tage). It is therefore easy to understand that the distance between the front frame and the front axle is important as an element of strength in the bumping.
この距離によって「ぶつけ」のときの衝撃,操作性は異なってくる。この衝撃に対する安定性,力の効果的な流し方を考えるとき,マエタゲに接続する側面のヨコタゲとシンボウ(車軸)との位置関係も重要になる。この間の距離を適切に取ることで下部構造の斜材が生きてくる。ここでは,代表的なヤマの寸法測定結果の一例を示す。
Depending on this distance, the impact and the maneuverability at the time of the collision will differ. When considering the stability against the impact and the effective flow of the impact forces, the vertical distance between the side frames and the axle* is also important. The braces of the understructure of the wagon seem to work effectively under the appropriate distance. Here are some examples of the dimensional measurements of the wagons.
ヤマの寸法調査表より
the dimensional measurements of the wagons
この表から寸法項目として,a. 車軸幅,b. 前輪軸芯-マエタゲ,c. 全幅,d. 全長,e. 軸芯ーヨコタゲの6項目で,寸法データが完全に取得されている12機の山車に対して主成分分析を行い,ヤマ構造の分類を試みた。
A principal component analysis was carried out on the 12 wagons whose dimensional data had been accurately recorded. Specifically, the following six dimensional items were analyzed: a. the axle width, b. the distance between the front wheel axle and front frame, c. the total width, d. the total length, e. the distance between the axles and the side frame, and the distance between the wagon’s centre of gravity and side frame* in order to classify the structure of the wagons.
本町のヤマは他のヤマと比較するとかなり縦長なものとなっており,この分析においても特徴的に位置づけとなっている。この本町のヤマと対極に“ぶっつけ”において最強とされる横町のヤマが配置されることは興味深い。
The Honmachi-dori float is considerably longer than the other floats and is also characteristically positioned in the principal component analysis. It is interesting to note that the Yokomachi float, which is considered to be the strongest in the bumping, is positioned opposite the Honmachi-dori one.
The scatter diagram of the floats by principal component analysis
この散布図の横軸と縦軸の意味を確認するために表:主成分得点係数の第1主成分の値を確認すると,右側ほど全幅の影響が強く,左側ほど前輪からマエタゲまでの距離が増え,これに合わせて全長が増える傾向にあることが読み取られる。
In checking the meaning of the horizontal and vertical axes of this scatter diagram, it can be seen that the floats positioned on the right side are more strongly influenced by the overall width according to the principal component scoring coefficients in Table 1, while the horizontal distance from the front axis to the front frame tends to be longer in the floats positioned on the left side, and the overall length tends to increase as well.
この傾向を確認するために前輪からマエタゲまでの距離と全長をそれぞれのヤマの全幅で割ったもので確認してみる(下表)。
This geometrical tendency is confirmed by the distance from the front wheel axis to the front frame and the overall length divided respectively by the overall width of each float (table 1 below).
この結果より,アスペクト比が大きな本町通りのヤマが顕著に縦長であることがわかる。その他のヤマのアスペクト比には特筆すべき差異は見当たらないが,横町と西部の前部構造つまりマエダケから前輪車軸までの構造が他のヤマと比較して横に広がりを見せる構造となっていることが読み取られる。この傾向と横町が最強とされる理由との摺り合わせはできていないが。興味深い傾向である。The results show that the Honmachi-dori float, which has a large aspect ratio, is markedly longitudinal. Although there are no notable differences in the aspect ratios of the other floats, it can be read that the front structures of the Yokomachi and Seibu floats, i.e. the structure from the front frame to the front axle, seem to be more horizontally spread than the other floats. However, this structural characteristic has yet to be reconciled with the reasons why the Yokomachi float is considered the strongest. It may be one of the interesting tendencies of the float.
同様に,第2主成分の値を確認すると,この縦軸の配置は下図に示す[車軸幅]と[車軸芯からヨコダケ上面までの距離]を掛けた面積の大小に対応していることがわかる。表中の数値は最大面積である駅前のヤマに対する比率で示してある。この面積比が大きいものほど主成分分析の縦軸上部に配置されていることが確認でき,ヤマ構造中心部の特徴の差異を明確に示していることがわかる。ここの面積を小さくすることで,機動性と強度を向上させることの可能性も否定はできない。Similarly, checking the values of the second principal component shows that the arrangement of the floats along the vertical axis in the figure of the scatter diagram seems to correspond to the size of the area multiplied by the distance between the front axis and the rear one [a] and the distance from the axis centre to the top of the side frame [e] shown in the figure below.
The values a×e in the table in the figure below are expressed as a ratio of the maximum area of the float called EKIMAE (meaning ‘in front of the station’). It can be confirmed that the larger this area ratio is, the higher the area is placed on the upper part of the vertical axis of the principal component analysis, clearly indicating the differences in the characteristics of the mountain structure centre. I think that the possibility of improving mobility and strength by reducing the area here cannot be ruled out.
コメント
コメントを投稿